

Removal and recovery of ammonium and phosphate from wastewater by means of geopolymer-based adsorbents

Prof. Dario Frascari

OF CIVIL, CHEMICAL, ALMA MATER STUDIORUM ENVIRONMENTAL, AND MATERIALS ENGINEERING UNIVERSITA DI BOLOGNA

DEPARTMENT

Dept. Civil, Chemical, Environmental and Material Engineering (DICAM) - University of Bologna, Italy

WHY PHOSPHATE RECOVERY BY ADSORPTION?

- Production of P-based fertilizers is expected to increase by 100% by 2050.
- P represents a limited resource. Unless a marked P recovery is implemented worldwide, the peak of phosphate rock extraction is expected to be reached by 2040-50
- Several technologies for phosphate recovery from municipal wastewater (MWW) are under development or optimization. They generally implement P recovery in the sludge line of wastewater treatment plants.
- Adsorption is not yet applied at full scale for P recovery, but it represents an interesting option for P recovery both from the sludge line and wastewater line.

WHY AMMONIUM RECOVERY BY ADSORPTION?

- Production of N-based fertilizers is expected to increase by 50% by 2050, starting from the current level of 110 million t/year.
- N is not a limited resource, but ammonia production from atmospheric N₂ is a very energy-intensive process
 (about 8000 kWh / t of NH₃ produced)
- In addition, the traditional biological process for NH₄⁺ removal from MWW is energy intensive (3300-3500 kWh / t NH₄⁺ removed) and does not allow any N recovery
- NH₄⁺ recovery from MWW by adsorption, followed by the production of N-based fertilizers, represents an attractive option, capable to drastically cut the energy requirement for both NH₄⁺ removal from MWW and N-based fertilizers production

THE GOAL OF THIS RESEARCH IS ...

... to develop and validate with real wastewater:

- Innovative geopolymers for the removal of ammonium by cation exchange from MWW and from effluents produced in the sludge treatment line
- Innovative geopolymer / hydrotalcite composites for the contemporary removal of ammonium (by cation exchange) and phosphate (by adsorption / anion exchange) from MWW and from effluents produced in the sludge treatment line

TESTED SORBENTS

Pure geopolymers for NH₄⁺ removal:

- > K-G2: K-based geopolymer with Si:Al ratio = 2
- ➤ Na-G1.2: Na-based geopolymer with Si:Al ratio = 1.2

Pure hydrotalcites for PO_4^{3-} removal:

- > S911 → Sorbacid 911: $[Mg_2Al_3(OH)_2(_{2+x})]CO_3 \cdot nH_2O$
- ▶ P61 → Pural 61: 61% MgO, 39% Al₂O₃
- ▶ P70 → Pural 70: 70% MgO, 30% Al₂O₃
- ▶ P50 → Pural 50: 50% MgO, 50% Al_2O_3
- Geopolymer / hydrotalcite composites for contemporary NH₄⁺ & PO₄³⁻ removal:
- ≻ K-G2 90% S911 10%
- ≻ K-G2 90% P61 10%
- ≻ K-G2 65% P70 35%

All tests were conducted with the 2 types of **ACTUAL WASTEWATER**:

	WWTP effluent → N&P removal from the wastewater line	Sludge WW from centrifugation of digested municipal sludge N&P removal from the sludg line	e
TSS (mg/L)	5.3 ± 0.6	0.3 ± 0.1	
NH ₄ -N (mg/L)	40 ± 3	<mark>810 ±</mark> 21	he tested WWs were pre-
PO4 ³⁻ -P (mg/L)	7 ± 1	122 ± 12	
Na⁺ (mg/L)	48 ± 3	120 ± 7	
K ⁺ (mg/L)	11 ± 1	230 ± 4	1 μm to avoid clogging of the
Mg ²⁺ (mg/L)	21 ± 2	3.4 ± 0.5	packed adsorption columns
Ca ²⁺ (mg/L)	14 ± 1	39 ± 1	
Cl ⁻ (mg/L)	128 ± 15	221 ± 3	
NO ³⁻ (mg/L)	0.81 ± 0.02	9.6 ± 0.2	
SO ₄ ²⁻ (mg/L)	93 ± 6	14 ± 2	
рН	7.6 ± 0.2	6.6 ± 0.4	

BATCH AND CONTINUOUS FLOW TESTS SETUP

- 125 mL borosilicate glass bottles
- \circ Sorbent concentration: 2-5 g_{dry} sorbent/L
- Operating parameters:
 - o orbital shaker 160 RPM
 - Temperature 22°C
 - $\circ~$ Equilibrium time 24 h

- $\circ~$ Resin bed height: 20-30 cm
- Empty bed contact time: 10-20 min
- Temperature: 22°C

UNIVERSITÀ DI BOLOGNA

1) AMMONIUM REMOVAL WITH PURE GEOPOLYMERS

Missione 4 • Istruzione e Ricerca

AMMONIUM REMOVAL WITH PURE GEOPOLYMERS: BATCH ISOTHERMS

- Tests were conducted with sludge WW
- Experimental data + best-fitting Langmuir interpolation:

$$C_{S,eq} = rac{C_{S,}^{\infty} \cdot C_{L,eq}}{rac{1}{K_{eq}} + C_{L,eq}}$$

Even if Na-G1.2 performed slightly better, K-G2 was selected for the development of geopolymer / hydrotalcite composites and for the continuous flow-tests for several reasons:

- Na-G1.2 features a crystalline phase that makes it difficult to
- Na-G1.2 presents a low selectivity for ammonium in comparison to the other cations

AMMONIUM REMOVAL WITH GEOPOLYMER K-G2: CONTINUOUS FLOW TESTS a) Geopolymer K-G2 compared to a natural zeolite, tests conducted with WWTP effluent (40 mgN/L)

ALMA MATER STUDIORUM Università di Bologna

2) SIMULTANEOUS AMMONIUM & PHOSPHATE REMOVAL WITH GEOPOLYMER / HYDROTALCITE COMPOSITES

PHOSPHATE REMOVAL WITH GEOPOLYMER / HYDROTALCITE COMPOSITES: BATCH ISOTHERMS FOR THE PRELIMINARY SCREENING OF DIFFERENT HYDROTALCITES

2

0

4

6

10

Liquid phase co

phase) active | Sorbed phase conc. (mgP / g hydrotalcite

promising indication for the process of contemporary ammonium & phosphate removal

K-G2 + S911 performed worse than pure S911

AMMONIUM REMOVAL WITH GEOPOLYMER / HYDROTALCITE COMPOSITES:

CONTINUOUS FLOW TESTS OF SIMULTANEOUS AMMONIUM & PHOSPHATE REMOVAL WITH THE K-G2 + S911 COMPOSITE...

... IN PROGRESS!

CONCLUSIONS

- The K-based geopolymer resulted a promising material for ammonium removal & recovery from both MWW (40 mgN/L) and sludge WW (810 mgN/L), on both batch and continuous flow tests
- Composites formed by the K-based geopolymer and 3 hydrotalcites led to promising results in terms of simultaneous ammonium & phosphate removal in batch isotherms. Sorption capacities for both N & P resulted comparable to those of the corresponding pure materials, except for the surprisingly high performance of Sorbacid 911 alone
- Further research is needed to optimize the continuous flow adsorption / desorption process of simultaneous ammonium and phosphate removal

ALMA MATER STUDIORUM Università di Bologna

Dario Frascari dario.frascari@unibo.it

Warm acknowledgments to: Walter Cossio Guzman, Cristina Di Pietro, Davide Pinelli, Matteo Minelli, Valentina Medri, Elettra Papa, Elena Landi, Francesco Miccio

GEopolymer based Adsorbents

GEA - GEopolymer based Adsorbents for effective adsorption and selective separation of CO₂ and eutrophication pollutants

> PRIN: PROGETTI DI RICERCA DI RILEVANTE INTERESSE NAZIONALE – Bando 2022 Prot. 20229THRM2 CUP B53D23015240006 Starting date: 16-10-2023