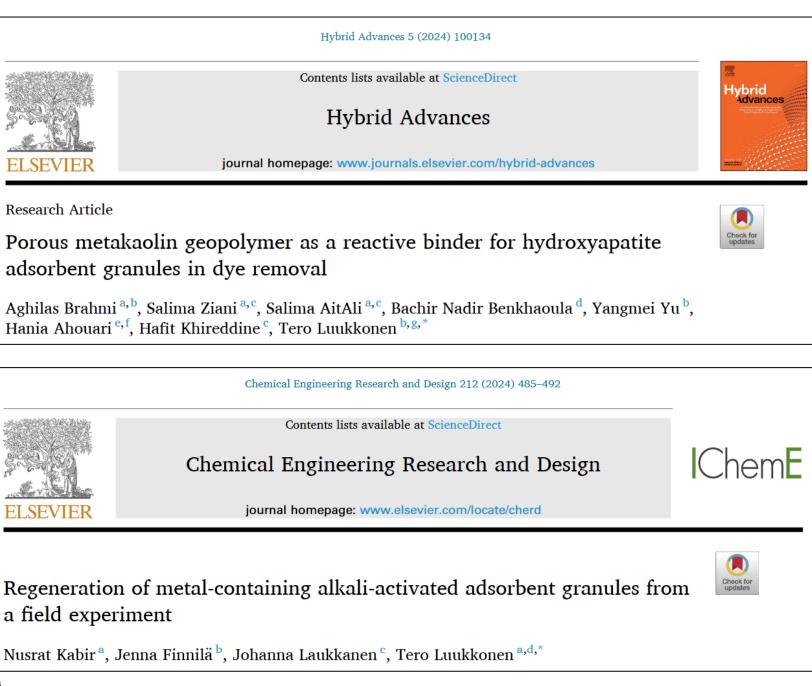

Recent advances in using geopolymers and alkali-activated materials as adsorbents

14.2.2025 Tero Luukkonen, University of Oulu

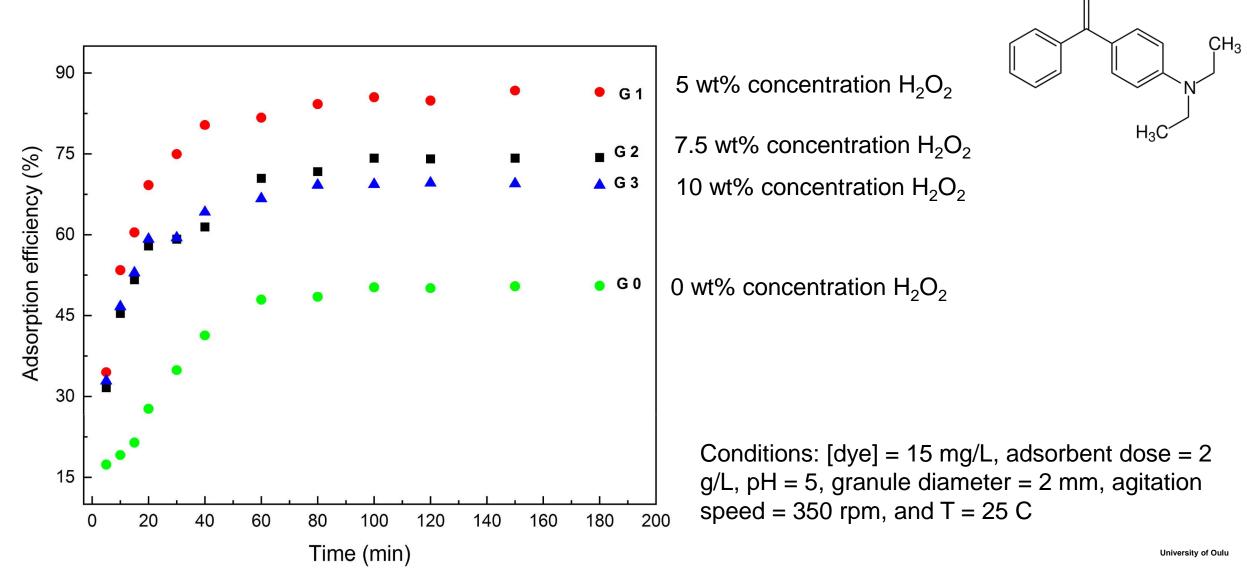

Use of geopolymers/AAMs as adsorbent binder

Scopus: "(adsorbent OR adsorption) AND ("water treatment" OR "wastewater treatment")"

2

- Adsorption-related research is increasing exponentially.
- Very few adsorbents end as commercial products.
- One challenge: how to develop practical granular materials from adsorbent powders?

High-shear granulation: Metakaolin + sodium metasilicate powder $(SiO_2/Na_2O = 0.9) +$ hydroxyapatite H_2O_2 solution **Pan granulation:** Metakaolin/BFS + M10 adsorbent (MgCO₃/MgO/Mg silicate) Sodium silicate solution $(SiO_2/Na_2O = 1.2)$


Granule compositions

Hydroxyapatite granules: Metakaolin (28.0 wt%) + sodium metasilicate powder (14.6 wt%) + hydroxyapatite (57.4 wt%) + H₂O₂ solution (dosing amount 18 wt% of solids)

- M10 granules:

Granule batch ID	Blast furnace slag [g]	Metakaolin [g]	M10 [g]	Na-silicate solution [g]
BFS	4500	0	0	1734
BFS+M10	2664	0	1336	1606
МК	0	2900	0	2030
MK+M10	0	1992	1002	1688

Hydroxyapatite granules

H₃C

CH₃

 HSO_4^{\ominus}

M10 granules

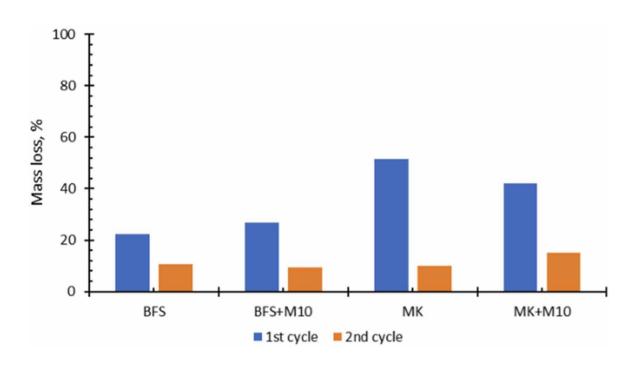
- On site mine water treatment
- 3 adsorption cycles
- Regeneration with 0.3 M HNO_3 (L/S = 10, 3 h)
- Granule amount: 5 L (cycle
 1), 0.18 L (cycles 2 & 3)
- Contact time: 5 30 min
 (cycle 1), 30 min (cycles 23)

University of Out

M10 granules

Closed mine, waste rock storage area seepage water (pH = 5.2)

Metal	Concentration [mg/L]
Ni	4.3
Mn	1.3
Fe	0.5
Zn	0.6
Со	0.1
Cu	0.2


		Total treated						
Adsorbent	Adsorption cycle	water [m ³]	Ni [µg/g]	Mn [µg/g]	Fe [µg/g]	Zn [µg/g]	Co [µg/g]	Cu [µg/g]
BFS	1	23	190	88	417	33	3	39
BFS	2	0.4	374	137	73	66	9	18
BFS	3	0.22	602	221	115	152	11	49
BFS+M10	1	23	51	68	445	29	2	35
BFS+M10	2	0.4	405	141	79	72	11	20
BFS+M10	3	0.22	1004	335	110	181	19	47
MK	1	4	121	50	66	24	4	13
MK	2	0.4	196	112	100	54	5	49
MK	3	0.22	102	42	157	51	2	44
MK+M10	1	4	45	28	3	10	1	0
MK+M10	2	0.4	477	162	116	126	10	67
MK+M10	3	0.22	818	264	153	213	19	75

Regeneration: 0.3 M HNO₃

Granules after adsorption

Adsorbents	Description	Specific surface area, m ² /g
BFS	Before adsorption	0.5
BFS	After 1st adsorption/regeneration	186.5
BFS	After 2nd adsorption/regeneration	164.4
BFS+M10	Before adsorption	0.7
BFS+M10	After 1st adsorption/regeneration	172.1
BFS+M10	After 2nd adsorption/regeneration	160.0
МК	Before adsorption	19.0
МК	After 1st adsorption/regeneration	32.1
МК	After 2nd adsorption/regeneration	48.4
MK+M10	Before adsorption	20.1
MK+M10	After 1st adsorption/regeneration	143.7
MK+M10	After 2nd adsorption/regeneration	132.5

Regeneration caused mass loss:

Separation of microplastics from water using superhydrophobic silane-coupling-agent-modified geopolymer foam

M.A.H. Bhuyan ^{a,b,c,*}, R. Busquets ^{b,c}, L.C. Campos ^c, T. Luukkonen ^{a,d}

* Fibre and Particle Engineering Research Unit, University of Oulu, Erkki Koiso-Kanttilan Katu, Oulu 90014, Finland ^b Department of Chemical and Pharmaceutical Sciences, Kingston University, Penrhyn Road, Kingston Upon Thames KT1 2EE, United Kingdom ^c Civil Environmental & Geomatic Engineering, University College London, Gower Street, London WC1E6BT, United Kingdom ^d Department of Chemical Engineering Technology, University of Johannesburg, P.O Box 17011, Doornfontein 2088, South Africa

	Microplastics are a topical environmental problem that requires urgent solutions. They are ubiquitously present
ity ng agent reatment	in various wates waters and are discharged into aquatic environments because of difficulties in their removal. In this study, a novel filtration medium, superhydrophobic geopolymer foam, was prepared and investigated for the separation of microplastics from water. The foam was prepared using metakaolin, sodium silicate, sodium hy- droxide, hydrogen peroxide, and Triton X-100 surfactant as raw materials and superhydrophobized with a silane coupling agent, triethoxy(octy)Isilane. The purpose of the superhydrophobization was to inport the of hydrophobic microplastics from water. The foam surface via chemical interactions. The modified geopolymer foam exhibited a water contact angle of 152°, and the presence of octyl chains on its surface was confirmed using Fourier transform infrared and X-ray photoelectron spectroscopies. When applied as a filter, the modified foam separated 53-63-µm sized polyethylene microspheres with ~99 % removal efficiency, and no change in its separation efficiency was observed for ~200 bed volumes of treated water. A comparison with an unmodified foam filter confirmed that the removal mechanism was not based on physical separation at higher flow rates, because the performance of the unmodified foam began to degrade after treating ~5 bed volumes of wastewater. The performance of the undified foam began to degrade after treating ~5 bed volumes of wastewater. The performance of the modified foam began to using superhydrophobic geopolymers as efficient, easy-to- prepare, and potentially low-cost separation media for microplastics from water efficiency for ~50 bed volumes of wastewater. This study provides proof of concept of using superhydrophobic geopolymers as efficient, easy-to- prepare, and potentially low-cost separation media for microplastics from water effluents.

has been estimated to be on the order of 1011-1012 particles per day from a single wastewater treatment plant (WWTP) [12,13]. The esti-

mated MP/NP amounts are highly uncertain, especially when data from

different measurements are combined [14]. The presence of MPs is

ecotoxicologically alarming because most fish are contaminated by

them in the areas affected by WWTPs [15,16]. MP ingestion can have

several negative impacts on aquatic organisms, including a reduction in

growth rate, difficulty in digestion, and intestinal abrasion [17]. MPs

toxic metals on their surfaces, acting as carriers of these pollutants into

To improve wastewater treatment for MP separation, various ap-

aquatic organisms and releasing them into the digestive system [18].

proaches are studied. For instance, conventional pressure-driven mem-

brane separation processes, such as microfiltration, ultrafiltration, or

1. Introduction

ARTICL Keywords:

Geopolymer

Hydrophobicit

Microplastics

Silane couplin

Wastewater tr

The global production of plastics was estimated to be 391 million metric tons in 2021 [1]. A significant fraction of this amount ends up in the aquatic environment, where weathering eventually degrades plastic items into microplastics (MPs, particles with a diameter between 1 um and 5 mm) and subsequently nanoplastics (NPs, particles with a diameter between 1 nm and 1 µm) [2]. Some important direct discharge sources of MPs/NPs include industrial and municipal wastewater and can also adsorb persistent organic pollutants, pathogenic microbes, and tire or bitumen wear [3-7]. It has been estimated that approximately 2.3 million tons of plastic waste float in oceans [8].

Conventional wastewater treatment processes (such as coagulation and flocculation) can separate more than 90 % of the MPs in raw wastewater [9-11]. However, the amount of MPs in treated wastewater

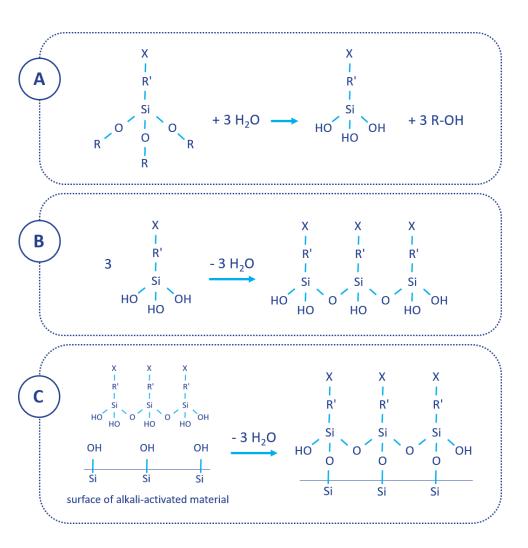
* Corresponding author. E-mail address: mohammad.bhuyan@oulu.fi (M.A.H. Bhuyan).

https://doi.org/10.1016/i.seppur.2024.126709

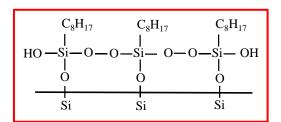
Received 19 December 2023; Received in revised form 25 January 2024; Accepted 5 February 2024 Available online 10 February 2024 1383-5866/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Microplastics separation

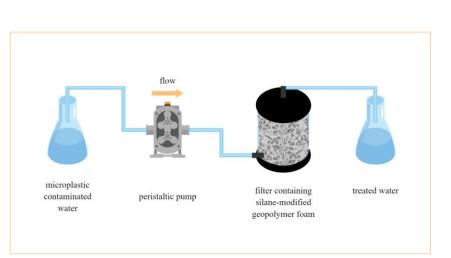
Microplastics: diameter of 1 µm to 5 mm Nanoplastics: diameter of 1 nm and 1 µm

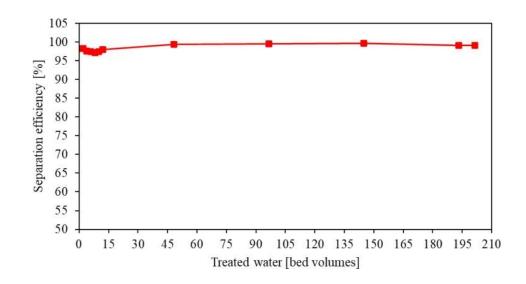


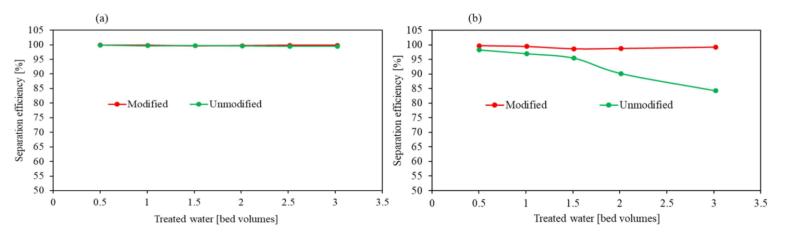
Unmodified geopolymer surface \rightarrow hydrophilic



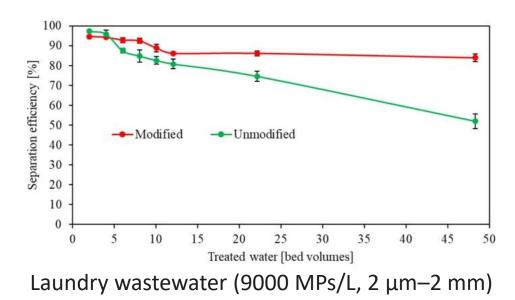
PE microspheres 45–50 μm




Geopolymer surface modified with triethoxy(octyl)silane → superhydrophobic (water contact angle 153 °)


XPS → Si-C bond

Luukkonen, T. (2022). Surface chemistry of alkali-activated materials and how to modify it. In Alkali-Activated Materials in Environmental Technology Applications (pp. 113-140). Woodhead Publishing.



Synthetic wastewater Flow rate = 5 mL/min (contact time \approx 30 min)

Synthetic wastewater (5 mg/L of PE = 65000 particles per L) (a) Flow rate = 3 mL/min (contact time \approx 50 min) (b) Flow rate = 5 mL/min (contact time \approx 30 min)

Flowrate 5 mL/min

Acknowledgements

Funded by the European Union

Mohammad Bhuyan Postdoc

Marco Fazzini Exchange from ¹² Uni. Bologna

Caroline (Yangmei) Yu

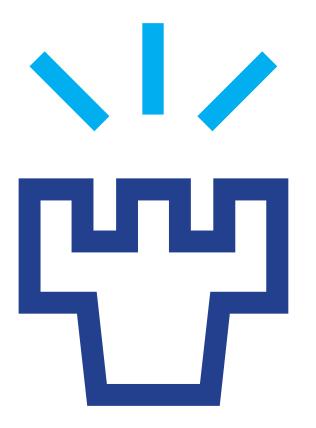
Faysal Hossain

PhD Researchers:

Sima Kamali

Akram Hossain

Mehedi Rabbil



Teknologiateollisuuden 100-vuotissäätiö

BUSINESS **FINLAND**

UNIVERSITY OF OULU