

CO₂ adsorption in geopolymers and geopolymer composites for post-combustion CO₂ capture

Matteo Minelli

Dept. Civil, Chemical, Environmental and Material Engineering (DICAM)

Alma Mater Studiorum - University of Bologna, Italy

DEPARTMENT OF CIVIL, CHEMICAL, ENVIRONMENTAL, AND MATERIALS ENGINEERING

motivation: CO₂ capture

global warming is becoming a real issue, but energy from fossil fuels is still predominant, and situation will not change over the next few decades

PSA

carbon capture and storage (CCS) is the promising strategy to readily reduce CO_2 emissions to a significant extent

CO₂ removal from flue gases (N₂/CO₂ mixture) can be obtained by means of **solid adsorbents**:

TSA

metakaolin-based geopolymers

material optimization to the desired application: (CO₂ capture)

effect of chemistry and stochiometry

potassium based geop.

KG_{1.2} Si/Al ratio 1.2

- loosely packed
- very low BET surface area

no measurable CO₂ adsorption

geop. phases can be easily shaped in moliths or pellets

no relevant differences in adsorption properties

potassium based geop.

KG₂ Si/Al ratio 2

- compact matrix → 27 Mpa
- modal pore $\emptyset = 0.01 \,\mu\text{m}$

- very large CO₂/N₂ selectivity
- poor CO₂ capacity

effect of chemistry and stochiometry

sodium based geop.

NaG_{1.2} Si/Al ratio 1.2

- nucleation of NaA
- modal pore $\emptyset = 0.71 \, \mu \text{m}$
- improved CO₂ capacity

			T=3	35°C			
CO ₂ capacity (mmol/g)	Na	-G _{1.2}	K-G ₂ 0.4 CO ₂ pre	0.6 ssure (atr	, - O O	0.8	1.0
			2				

	porosity	BET area
KG _{1.2}	38%	13 m ² /g
KG ₂	42%	88 m²/g
NaG _{1.2}	41%	14 m ² /g
NaG ₂	-	-

sodium based geop.

NaG₂

Si/Al ratio 2

processing and geop.
 fabrication issues

microstructure similar to KG₂

geopolymer-based composites

geopolymer (mesoporosity)

zeolite (microporosity)

- ✓ geopolymer microstructure is intrinsically meso-porous (nano-particulates separated by pores)
- ✓ geopolymers can also incorporate other moieties forming composites

geopolymer-zeolite composites

- → synergetic effect between the 2 components
- ✓ increase of pore size distribution range:
 - (micro + meso-macro)
- ✓ easy casting and shaping (binder)
- ✓ functionalization (zeolite properties + geopolymer properties)

geopolymer-based composites

potassium based geop. composite **KG₂+Na4A**

- filler Na4A (22 wt.%)
- KG₂ matrix remains pretty much amorphous
- modal pore $\emptyset = 0.06 \mu m$
- weak CO₂ capacity

sodium based geop. composite NaG_{1.2}+Na4A

- filler Na4A (27 wt.%)
- large nucleation of NaA (up to about 80% from RIR)
- modal pore $\emptyset = 1.8 \mu m$

geopolymer-based composites

potassium based geop. composite KG₂+Na13X

Filler Na13X (22 e 36 wt.%)

 Compact matrix and good mechanical strenght (17 MPa)

Modal pore Ø = 0.03 μm

sodium based geop. composite NaG_{1.2}+Na13X

 Nucleation of NaA + filler Na13X (27 wt.%)

Lower mechanical strength

• Modal pore $\emptyset = 1.47 \mu m$

composite monoliths are also obtained by **cold sintering** geopolymer and zeolite powders:

- ✓ compression @ P = 56 or 168 MPa and T= 40°C
- ✓ re-activation with KOH or NaOH 4M

 $K-G_2$ (<200 μ m)

or NaG_{1.2} (81% NaA)

- ✓ disappearance of the ultra macropores
- √ bimodal distribution

✓ the geopolymer matrix, in the CSP composite, is more cohesive

- ✓ decrease of total porosity
- ✓ decrease of the average pore size
- ✓ broad pore size distribution

cold sintering process allows:

- ✓ the re-use of waste material (e.g. KG₂ powder)
- ✓ the formation of monoliths to be used in adsorption processes (geop. as binders)
- ✓ the enhancement of the overall gas adsorption, thanks to basic reactivation

conclusions

geopolymers are characterized by an interesting potential for CO₂ capture application:

- ✓ ease of fabrication and processing (mild conditions synthesis);
- ✓ they can be readily shaped in monoliths or pellets;

✓ gas adsorption properties are **tunable**, playing with chemistry or fabricating composites, reaching good performances

✓ **cold sintering process** is a promising pathway to produce composites with improved sorption capacity.

conclusions

geopolymers are characterized by an interesting potential for CO₂ capture application:

- ✓ ease of fabrication and processing (mild conditions synthesis);
- ✓ they can be readily shaped in monoliths or pellets;

✓ gas adsorption properties are **tunable**, playing with chemistry or fabricating composites, reaching good performances

✓ **cold sintering process** is a promising pathway to produce composites with improved sorption capacity.

acknowledgments

National Recovery and Resilience Plan PNRR

Mission 4 "Education and Research" - Component C2

Investment 1.1 "Fund for the National Research Program and Projects of Significant National Interest (PRIN)"

GEopolymer based Adsorbents for effective adsorption and selective separation of CO₂ and eutrophication pollutants

MUR PRIN 2022 "GEA" Project - Prot. 20229THRM2, funded by the European Union - Next Generation EU

Thank you

Matteo Minelli

matteo.minelli@unibo.it

www.unibo.it