### WORKSHOP Geopolymer for Environmental Remediation



February 14th 2025, Faenza, Italy

### Advancing wastewater treatment systems with 3D-printed AAMs

Rui M. Novais<sup>\*</sup>, Mariana M. Almeida, Ana P.F. Caetano, J.G. Cuadra, Nuno P.F. Gonçalves, João A. Labrincha

Materials and Ceramic Engineering Department / CICECO – Aveiro Institute of Materials, University of Aveiro (Portugal)



\*ruimnovais@ua.pt

February 14, 2025

### Context



#### Navigating Climate Realities: The Present and Future of Our Planet











"We do have a choice (...). This is an all-in moment. (...). Tomorrow is too late. Now is the time to mobilise, now is the time to act, now is the time to deliver." António Guterres (Secretary-General, UN)

2

### Context

## AAMs& Geopolymers—potential applications





#### Heavy metals & dyes sorbents



Novais et al., Journal of Cleaner Production 207, 350-362 (2019).



Novais et al., Journal of Environmental Management 272, 111049 (2020).





Senff et al., Construction and Building Materials 239 (2020). Novais et al., Ceramics International 44 (2018).

#### **Acoustic insulation**



Novais et al., Energy and Buildings 210, 109739 (2020). Novais et al., Journal of Building Engineering 42 (2021). Gonçalves et al., Building and Environment 205, 108281 (2021)

**Moisture regulation** 

30 % PCH







pH buffering tests

Novais et al., Journal of Cleaner Production 178, 258-267 (2018). Gameiro et al., Bioresource Technology 316, 123904 (2020). Gameiro et al., Bioprocess and Biosystems Engineering 44 (6), 1167-1183 (2021).

#### Progress in Materials Science 109 (2020) 100621



Geopolymer foams: An overview of recent advancements

Rui M. Novais\*, Robert.C. Pullar, João A. Labrincha

Department of Materials and Cerumic Engineering/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Awrine, Portugal



### Context

## Porous AAMs-Synthesis



#### **Chemical foaming**



Source: Bai & Colombo. Ceramics International 44 (2018) 16103–16118.

#### **Suspension & solidification**



AAM spheres



Novais et al., Materials Today 23, 105-106 (2019).

#### **Sacrificial fillers**



Source: Renata Botti and Giorgia Franchin. Highly porous alkali-activated materials. In: Luukkonen T (Editor), Alkali-Activated Materials in Environmental Technology Applications. Woodhead Publishing, Kidlington, United Kingdom, 2022. ISBN: 978-0-323-88438-9, Chapter 4 (2022).





### **Porous geopolymers** – Synthesis

#### **Direct ink writing (DIW)**





Source: Franchin et al.. Materials and Design 195 (2020) 109006.



M. Almeida et al., Waste Management 190 (2024) 35-44.

### AAMs-novel sorbents

# Rest of the second seco

#### **3D Printed lattices:** properties



#### Metakaolin-lattice

SSA = 100 m<sup>2</sup>/g Open porosity = 61.1% Compressive strength = 17.3  $\pm$  1.1 MPa

#### Metakaolin/red mud-lattice

SSA = 55 m<sup>2</sup>/g Open porosity = 59.0% Compressive strength = 10.7 ± 0.7 MPa

N. Gonçalves et al., Journal of Cleaner Production 383 (2023).



### Results

### Remediation of synthetic wastewaters



#### **3D Printed lattices:** cationic dye removal

#### Effect of red mud in the 3D lattice





3D-RM50

b) 20

15

.



#### Filament surface

### **Results**

3 g/L adsorbent

80 8

200



Removal efficiency (%)

150

untake

[MB]<sub>0</sub>, ppm

50



### Remediation of synthetic wastewaters



### 3D Printed lattices: regeneration and reusability

#### Thermal treatment (400°C/2h):





After regeneration





### Lattice after 10 adsorption & regeneration cycles

#### 3D-RM50

### Results

### Boosting the performance of bulk-type sorbents





### Waste-based 3D printed AAMs





filaments rotated at 90°



filaments rotated at 45°

M. Almeida al., Waste Management 190 (2024) 35-44.



**Column tests** 



500 mL [Pb<sup>2+</sup>] = 50 ppm; (pH<sub>0</sub> = 4); 120 mL/min flow

### Acid mine drainage (AMD)



#### AMD is a highly acidic solution (pH typically <3)



Naidu et al., Environmental Pollution 247 (2019).

#### Contains several toxic elements (As, Cd, Co, Cu, Pb, Ni, Zn)

Context



Chen et al., Journal of Cleaner Production 329 (2021) 129666.

### Results



### Real AMD sample-São Domingos Mine, Portugal

138 – São

**Domingos Mine** 





#### Aerial view of São Domingos mine (Mértola, Portugal)





| Element                  | Concentration |
|--------------------------|---------------|
| рН                       | 2.27          |
| SC µm/cm                 | 3091          |
| SO4 <sup>2-</sup> [mg/L] | 2077          |
| Cl <sup>-</sup> [mg/L]   | 65.3          |
| Na [mg/L]                | 58.57         |
| Mg [mg/L]                | 64.24         |
| Al [mg/L]                | 126.4         |
| K [mg/L]                 | 2.665         |
| Ca [mg/L]                | 93.69         |
| Mn [mg/L]                | 8.716         |
| Fe [mg/L]                | 155.2         |
| Cu [mg/L]                | 14.77         |
| Zn [mg/L]                | 26.46         |
| Li [µg/L]                | 250           |
| Be [µg/L]                | 3             |
| Β [μg/L]                 | 68            |
| Ρ [μg/L]                 | 29            |
| Ti [μg/L]                | 63            |
| V [µg/L]                 | 2             |
| Cr [µg/L]                | 49            |
| Co [µg/L]                | 727           |
| Ni [µg/L]                | 211           |
| As [µg/L]                | 197           |

| Element   | Concentration |
|-----------|---------------|
| Rb [µg/L] | 10            |
| Sr [µg/L] | 217           |
| Cd [µg/L] | 107           |
| Sb [µg/L] | 0.6           |
| Cs [µg/L] | 1.1           |
| Ba [µg/L] | 6             |
| La [µg/L] | 29            |
| Ce [µg/L] | 75            |
| Pr [µg/L] | 9             |
| Nd [µg/L] | 37            |
| Sm [µg/L] | 9             |
| Eu [µg/L] | 2             |
| Gd [µg/L] | 9             |
| Tb [μg/L] | 1.2           |
| Dγ [μg/L] | 7             |
| Ho [µg/L] | 1.3           |
| Er [µg/L] | 3             |
| Tm [µg/L] | 0.4           |
| Yb [µg/L] | 3             |
| Lu [µg/L] | 0.3           |
| TI [μg/L] | 7             |
| Pb [µg/L] | 322           |
| U [µg/L]  | 3             |
|           |               |

### Remediation of synthetic wastewaters



### Printed lattices: Metal(loid) sorption – simultaneous removal of 5 cations

#### Effect of pH, initial concentration and contact time



### Remediation of real acid mine drainage (AMD)



#### Printed lattices: effect of contact time



N. Gonçalves et al., Journal of Hazardous Materials 462, 132718 (2024).



**Results** 

### Remediation of real acid mine drainage (AMD)





#### Printed lattices: acid treatment

Lattice (as-prepared)

#### Lattice (after acid neutralization)



### Remediation of real acid mine drainage (AMD) Results



#### Printed lattices: regeneration and reusability



 $m_{3D-50RM} = 600 \text{ mg}$   $V_{AMD} = 50 \text{ mL}$  $[EDTA.2Na]_0 = 0.05 \text{ M}, 3h$ 

### Remediation of real acid mine drainage





#### Printed lattices: regeneration and reusability





#### Lattice before the tests

#### Lattice after 5 adsorption/regeneration cycles

 $SSA = 55 \text{ m}^2/\text{g}$ 

 $SSA = 71 \text{ m}^2/\text{g}$ 

### Boosting the performance of bulk-type sorbents

0

2

Time (h)

### **Results**



precursors

containing

Aluminosilicate

#### Waste-based 3D printed AAMs





130000

Magnetic stirrer

Reservoir

Ø 35mm

Inlet.

Outlet

Peristaltic

pump

6

---Fe

-- Cu

-Zn

-Mn -- Ni

---Pb -•-pH

6

8

100

M. Almeida al., Unpublished results.

# Conclusions















Biomass fly ash



### Solution? AAM foams



# Thank you for your attention!

### **Collaboration?**

### Rui M. Novais

E-mail: ruimnovais@ua.pt

Webpage: ciceco.ua.pt/RuiNovais

Materials and Ceramic Engineering Department / CICECO – Aveiro Institute of Materials, University of Aveiro (Portugal).

university of aveiro theoria poiesis praxis



**CICECO** 

**Questions?** 

FCT Fundação para a Ciência e a Tecnologia

FCT project MAXIMUM (PTDC-CTM-CTM-2205-2020). UIDB/50011/2020, UIDP/50011/2020 & LA/P/0006/2020

Horizon Europe MSCA PF grant agreement No 101065059

<u>edm</u>





